
UC Berkeley
Research Reports

Title
An Interface Between Continuous And Discrete-event Controllers For Vehicle Automation

Permalink
https://escholarship.org/uc/item/66h9q6qw

Authors
Lygeros, John
Godbole, Datta N.

Publication Date
1994

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/66h9q6qw
https://escholarship.org
http://www.cdlib.org/

ISSN 1055-1425

April 1994

This work was performed as part of the California PATH Program of the
University of California, in cooperation with the State of California Business,
Transportation, and Housing Agency, Department of Transportation; and the
United States Department of Transportation, Federal Highway Administration.

The contents of this report reflect the views of the authors who are responsible
for the facts and the accuracy of the data presented herein. The contents do not
necessarily reflect the official views or policies of the State of California. This
report does not constitute a standard, specification, or regulation.

CALIFORNIA PATH PROGRAM
INSTITUTE OF TRANSPORTATION STUDIES
UNIVERSITY OF CALIFORNIA, BERKELEY

An Interface Between Continuous and
Discrete-Event Controllers for Vehicle
Automation

UCB-ITS-PRR-94-12
California PATH Research Report

John Lygeros
Datta Godbole

An Interface between Continuous & Discrete-Event

Controllers for Vehicle Automation
�

John Lygeros and Datta N. Godbole

Intelligent Machines and Robotics Laboratory

Department of Electrical Engineering and Computer Sciences

University of California, Berkeley

Berkeley, CA 94720

lygeros@robotics.eecs.berkeley.edu

godbole@robotics.eecs.berkeley.edu

Abstract

The work presented here is part of a bigger e�ort to design an automated highway
system to improve the capacity and safety of the current highways. Automation of

highways and in particular platooning of vehicles raises a number of control issues. In the
design proposed in [1] these issues are addressed by a hierarchical structure consisting

of both discrete event and continuous time controllers. The work presented here is
an attempt to construct a consistent interface between these two types of controllers.

The design proposed is in the form of a set of �nite state machines that interact with
the discrete controllers through discrete commands and ags and with the continuous

controllers by issuing commands that get translated to inputs for the vehicle actuators.
The operation of the proposed design is veri�ed using COSPAN and tested in simulation.
By virtue of the fact that the interface touches on both the discrete and continuous

worlds, the design might provide insight to interesting problems related to the hybrid
nature of the system.

1 Introduction

The work presented here was carried out with the particular Automated Highway System
(AHS) structure of [1, 2, 3] in mind. In this context, it is assumed that tra�c on the highway
is organized in platoons of tightly spaced vehicles. This is done in an attempt to maximize
the capacity and the throughput of the highway, while avoiding exposing the passengers to
additional risk. Theoretical studies indicate that the capacity increase if such a scheme is

�Research supported by the PATH program, Institute of Transportation Studies, University of California,
Berkeley, under MOU 100

1

implemented successfully will be substantial. Moreover, this will be done without a negative
impact on passenger safety as, by having all the vehicles of a platoon follow each other with
a small intra-platoon separation (about 1 meter), then, if there is a failure and an impact is
unavoidable, the relative speed of the vehicles involved will be small (hence the damage to the
vehicles and the injuries to the passengers will be minimized). The inter-platoon separation,
on the other hand, is large (of the order of 30 meters) to physically isolate the platoons from
each other, so that the probability of a collision is minimized and decelerations are attenuated
as they propagate up the highway.

Clearly the realization of such a scheme requires automatic control of the vehicles.
The control of such a large scale system poses a formidable problem. There needs to be some
form of Autonomous Intelligent Cruise Control (AICC) law to maintain a safe separation
between platoons, a di�erent control law to keep the platoon tightly spaced and specialized
control laws to carry out various maneuvers (such as forming and breaking up platoons and
moving vehicles from one lane to the next). Moreover, there needs to be some coordination
between these laws to ensure that the operation of the system is safe and e�cient. Finally, the
scheme requires a controller that monitors the conditions of the entire highway and decides
on a long term strategy aimed at maximizing capacity.

The control structure suggested in [1] consists of four layers (Figure 1). The top
layer, called the network layer, is responsible for the ow of tra�c on the entire highway
system. Its task is to prevent congestion, maximize throughput and minimize travel times by
dynamic routing of tra�c.

The second layer, called the link layer, coordinates the operation of whole sections
(links) of the highway. Its primary concern is to maximize throughput while maintaining safe
conditions of operation. With these criteria in mind, it calculates an optimum platoon size
and an optimum velocity for each highway section. It also decides which lanes the vehicles
should follow to get to their destinations as fast as possible. Finally, it monitors incidents
on the highway and diverts tra�c in order to minimize the impact of the incident on tra�c
ow and safety. Because the link layer bases its control actions on large numbers of vehicles,
it inevitably has to use some form of aggregate information. Therefore it treats the vehicles
in a section statistically rather than considering the state of individual vehicles or platoons.
Likewise, the commands it issues are not addressed to individual vehicles but rather to all
the vehicles in the section as a whole; a typical command would be \30% of the vehicles who
wish to get o� the highway at the next exit change lane now" or \all platoons in this section
should try to be 10 vehicles long". The design proposed in [4] makes use of ow equations to
model the tra�c in the given section.

The next level of hierarchy is the coordination layer. Its task is to coordinate
the operation of platoons with their neighbors. It receives the link layer commands and
translates them to speci�c maneuvers that the platoons need to carry out. For example, the
coordination layer will ask two platoons to merge to a single platoon whose size is closer to
the optimum or, given a command like \30% of the vehicles going to the next exit change
lane now", it will decide which vehicles will be in this 30% and split the platoons accordingly.
The design proposed in [5] uses protocols, in the form of �nite state machines, to organize the
maneuvers in a systematic way. They receive the commands of the link layer and aggregated
sensor information from the individual vehicles (of the form \there is a vehicle in the adjacent

2

lane"). They then use this information to decide on a control policy and issue commands to
the lower layer. The commands are typically of the form \accelerate to merge to the preceding
platoon" or \decelerate to let another vehicle move into your lane ahead of you".

Below the coordination layer in the control hierarchy lies the regulation layer. Its
task is to receive the coordination layer commands and translate them to throttle, steering
and braking input for the actuators on the vehicle. For this purpose it utilizes a number of
continuous time feedback control laws ([6, 7, 8, 9]) that use the readings provided by the sensors
to calculate the actuator inputs required for a particular maneuver. The regulation layer
occasionally needs to communicate with the coordination layer to inform it of the outcome of
a maneuver.

There is one more layer in the system which is not part of the control architecture.
It is the physical layer, i.e., the actual vehicle. For the purposes of the control design it is
modeled as a set of di�erential equations and transfer functions that translate the actuator
inputs (provided in this case by the regulation layer) to the state of the vehicle (position,
velocity and acceleration). The physical layer also includes the sensors that provide sampled
information about the state to be used by the control algorithms.

The work presented here focuses on the interface between the regulation and coor-
dination layers. [5] describes how the coordination layer protocols were designed and tested.
A great deal of work has also been done on continuous time control algorithms that the reg-
ulation layer uses to carry out the various maneuvers ([6, 7, 8, 9]). Between these two areas
of development, there is still, however, a gap. As discussed above, the commands of the co-
ordination layer typically are of the form \accelerate to merge with the preceding platoon".
The continuous time control laws are unable to directly interpret these commands and intro-
duce them in their actuator input calculations. Similarly, the coordination layer needs some
way of interpreting the sensor readings and the state of the continuous time controllers in a
form that it can understand. In other words, there is a need for an interpreter because the
coordination layer (discrete event system) and the regulation layer (continuous time system)
speak in di�erent languages. We seek to �ll this gap by providing an interface that allows this
communication to take place.

The interface proposed here is in the form of a discrete event system (DES). It has a
�nite number of states (�nite state machine) representing commands directed towards either
the regulation layer (e.g., invoke a speci�c controller) or towards the coordination layer (e.g.,
notify the appropriate protocol that the requested maneuver was completed). The DES will
transition from one state to another depending on the commands from the coordination layer,
the readings of the sensors and the state of the continuous time controllers. The design will be
arranged so that there is never a conict or a deadlock, and the coordination layer commands
are followed whenever this is possible.

The paper is arranged in three main parts. In the �rst part, the framework into
which our design �ts is outlined. We briey describe existing work on the regulation and
coordination layers and provide references that contain more details. This outline will motivate
our work, which is presented in Sections 3 and 4. In Section 3, the assumptions we make about
the interaction of the interface with the rest of the system are presented and the tasks that the
design will be expected to perform are speci�ed in detail. In Section 4, the formal speci�cation
of the proposed design is given and it is veri�ed that the required tasks are indeed performed.

3

The veri�cation is done automatically by means of COSPAN, a program that veri�es whether
all event sequences (runs) that can be generated by a collection of interacting �nite state
machines satisfy the speci�ed properties. In the closing section, directions for extending this
work are outlined.

2 Coordination & Regulation Layer Design

2.1 Coordination Layer

As discussed in the introduction, the task of the coordination layer is to systematically organize
the tra�c in platoons. It is assumed that the vehicles are equipped with communication
devices that allow them to exchange messages and coordinate maneuvers in order to form
and break up platoons and move vehicles between the lanes. The coordination layer design
proposed in [5] uses only three such maneuvers: merge, split and lane change. The reason
behind the small number of maneuvers is to keep the design as simple as possible. To further
simplify the problem it is assumed that only leaders or free agents can initiate maneuvers; the
followers can request their leader to initiate a maneuver for them1. Finally the current design
requires that each platoon will be involved in at most one maneuver at a time.

We will now briey describe the actions involved in each one of the coordination
layer maneuvers of [5]. The merge maneuver is used to join two platoons in the same lane
and form a single platoon. The following platoon requests the leading platoon permission to
merge. The permission is granted, if the leading platoon is not engaged in another maneuver
and if the size of the resulting platoon will not exceed the upper limit set by link layer. After
an agreement is reached, the coordination layer of the following platoon orders its regulation
layer to accelerate to catch up with the leading platoon. At the end of the maneuver, the
following platoon becomes part of the leading platoon. The split maneuver does exactly the
opposite. It is used to break the platoon into two smaller platoons. The trailing platoon
decelerates after break up to create safe inter-platoon separation from the parent platoon.
Finally the change lane maneuver is used to move vehicles from one lane to another. For
simplicity, it is required that only free agents may change lanes. Apart from the obvious lateral
movement, lane change may also involve longitudinal movement. The possible longitudinal
actions that may be required for changing lanes are summarized in Figure 2. Free agent A
wants to change to the lane where platoon B is moving. It is assumed, for purposes of safety,
that A can move over only if its speed is close to that of B and their spacing is close to some
safety distance (dsafe). There are three scenarios that allow A to move over in safety: A has
to decelerate and move in behind B, B has to decelerate and let A in ahead of it, or B has
to split and let A enter in the middle. One of the three alternatives is chosen, depending on
the size of B and the position of A relative to B. Overall, the lane change maneuver consists
of two steps. In the �rst step, labeled Decel to Change, the vehicles adjust their longitudinal
positions so as to align the vehicle changing lane with a gap. In the second step, calledMove,
the lateral action of the lane change is carried out.

1In the context of platooning each vehicle will be either a leader (�rst vehicle of the platoon), a follower or
a free agent (single vehicle platoon).

4

The coordination required in order to carry out these maneuvers in safety was spec-
i�ed in [5] by a structured set of communication messages, in the form of protocols. Modeling
these protocols by interacting �nite state machines the logical correctness of the design was
veri�ed using COSPAN.

2.2 Regulation Layer

The regulation layer consists of a number of feedback control laws that make use of sensory
information to produce throttle, brake and steering inputs for the vehicle actuators. The
current design is based on a continuous time, ordinary di�erential equation model of the
vehicle dynamics. The control laws are designed to take into account vehicle capabilities and
passenger comfort standards. The di�erent control laws needed for normal operation of the
regulation layer are summarized below:

Lead Control: The primary goal of the lead control law is to maintain safe spacing between
platoons. In the design of [9] the safe spacing is calculated according to the formula:

D = �a�x+ �v _x+ �p

where _x and �x denote the velocity and acceleration of the platoon. For normal operation,
the values �a = 0; �v = 1sec; �p = 10m are currently used. Provided that the primary
task is carried out without a problem, the controller also tries to perform a secondary
task, namely to track the optimum velocity calculated by the link layer as closely as
possible.

Follower: The follower control law has a single objective: it tries to match the velocity and
acceleration of the preceding vehicle in the platoon, while staying close (1 meter) behind
it. It also has the advantage that the vehicles within a platoon are connected via an
infrared communication link, so they have access to information about their neighbors
other than that provided by their sensors. [6, 8] provide details of possible designs of
the follower control law.

Merge: The merge control law is expected to take two vehicles (or platoons) with an initial
spacing do (typically 30 meters) and a initial velocity mismatch �vo (typically a few
meters per second) to a �nal spacing equal to the intra-platoon spacing (typically 1
meter) and zero velocity mismatch. The whole maneuver should be carried out as fast as
possible but without pushing the engine or the brakes to their limits (thus compromising
safety) and without a�ecting passenger comfort. A continuous time feedback controller
that ful�lls the above requirements was designed and is presented in [9]. It is based on
the calculation of a desired trajectory at the beginning of the maneuver. Feedback from
the sensors is then used to keep the actual vehicle trajectory as close as possible to the
desired one.

Split: The split controller is expected to take a pair of vehicles, initially at intra-platoon
spacing and zero velocity mismatch (assuming that the follower law operation is close
to perfect), to inter-platoon safe spacing and zero velocity mismatch. The design is very
similar to the one for the merge maneuver: a trajectory that carries out the desired task

5

and does not violate any limits is calculated and then feedback is added to guarantee
tracking [9].

Decel to Change: A controller capable of carrying out the longitudinal actions expected by
Decel to Change (refer to Figure 2) is presented in [9]. The general principle is again
very similar to that of the merge maneuver.

Move: The move control law involves lateral motion. Again the design should be such that the
required input does not force the actuators close to their limits or makes the passengers
uncomfortable. A design satisfying these requirements is presented in [10].

Lane Follow: The lateral control law that maintains lane position is required to keep the
vehicle at the center of the lane. The current design uses magnets placed at regular
intervals along the center of the lane and magnetometers mounted on the vehicle to
obtain deviations from the center of the lane. A frequency shaped LQ optimal controller
is designed in [7] to achieve the lane keeping objective.

3 Interface Design Assumptions & Requirements

The interface structure and its interactions with the surrounding controllers are outlined in
more detail in Figure 3. In this �gure the entry marked \Regulation Layer" in Figure 1 is
expanded (between the dotted lines) to reveal the details of the internal structure. In the
center of the regulation layer lies the \interface", which is the main subject of this paper. It
communicates with the coordination layer through two channels, one for receiving requests
and one for sending out responses. The interaction is facilitated by the presence of two bu�ers
that can be used to store the commands and responses. The interface also has to interact
with the continuous time controllers that are used to calculate the actuator inputs (in this
case assumed to be steering, throttle and brake). Note that the regulation layer contains a
number of di�erent control algorithms (in the �gure they are indicated by the slots under
the collective name control input calculation), each designed to carry out a speci�c maneuver.
Therefore it is important that the interface keeps track of the controller it has to invoke in a
systematic manner. Finally, the interface has to make certain assumptions about the physical
layer. It also has to interact with it directly through the sensor information that is needed to
make decisions. In this section we will lay out the assumptions we make and the speci�cations
we set for all these interactions of the interface.

3.1 Interaction with Coordination Layer

Our primary goal is a design that will allow the coordination and regulation layers to operate
asynchronously and at di�erent time scales. This is achieved in this case by the use of the
reg response and reg request communication lines and the command and ag bu�ers. The
coordination layer decides what maneuver needs to be carried out and stores the appropriate
command in the command bu�er. It then noti�es the regulation layer through the reg request
line. Whenever the regulation layer is ready, the interface reads the command from the
command bu�er and invokes the appropriate control law to carry out the maneuver. When

6

the maneuver is completed, the interface stores a ag that signi�es success in the ag bu�er
and noti�es the coordination layer through the reg response line. If the maneuver was aborted
(because it was unsafe to proceed with it), the ag signifying failure is stored in the bu�er
and reg response is used to notify the coordination layer. Whenever the coordination layer is
ready, it reads the ag from the bu�er, updates its state accordingly and decides on the next
action.

This arrangement gives a lot of exibility to the interface. While the coordination
layer is waiting for the reg response, it can carry out other tasks (e.g., plan its next move).
Likewise, the regulation layer can operate autonomously without having to synchronize with
the coordination layer; in fact, communication is necessary only when a new maneuver is
requested. In between requests the regulation layer can go about its business as if the coordi-
nation layer is not there. It is assumed that in an actual implementation of the control scheme,
reg request and reg response will use interrupt lines. In the current implementation within
the framework of the SmartPath simulator [11], the communication channels are modeled by
\events" in the C-Sim programming language, which can be thought of as a form of software
interrupts. To simplify the �gures the abbreviation nr will be used to indicate that the coor-
dination layer has no request or the regulation layer has no response (the interpretation will
be clear from the context).

3.1.1 Commands

The commands stored in the command bu�er reect the maneuvers that a vehicle may be
requested to carry out under the platooning scenario.

Accel to Merge: Asks the vehicle to join the preceding platoon.

Decel to Change: Asks for a deceleration so that vehicles in adjacent lanes end up in a
relative position from which a lane change can take place safely. Figure 2 shows three possible
scenarios for lane change. Which of the three alternatives is chosen is decided by the coordi-
nation layer; the regulation layer simply carries out the chosen maneuver. If scenarios 1 or 2
are chosen the coordination issues a Decel to Change command to the appropriate regulation
layer (A or B respectively). If scenario 3 is chosen the command Split Change (see below) is
issued to the regulation layer of the appropriate vehicle in platoon B.

Move: Asks the regulation layer to move the vehicle to the adjacent lane.

Split Free: Splits the platoon so that a car can become a free agent.

Split Change: Creates a split so that a vehicle from an adjacent lane can change lane in
the middle of the platoon, as in the scenario 3 of Figure 2. The maneuver is almost identical
to the one of Split Free, the only di�erence being that the �nal separation of the vehicles is
twice as much for the case of Split Change.

The �rst two commands can be issued only when the vehicle is either the leader
of a platoon or a free agent. The third can be issued only when it is a free agent. Finally,
the last two can be issued only when the vehicle is a follower in a platoon. The interface
expects the coordination layer to keep track of these facts. In the �gures the command names

7

will be abbreviated to keep the notation simple: Accel to Merge will be denoted by mrg,
Decel to Change by ch, Split Free and Split Change by sp and Move bymv . The abbreviation
nc will be used when the coordination layer does not command any special maneuver. In this
case the regulation layer will execute the default control law (either leader or follower).

3.1.2 Flags

For the communication from the interface to the coordination layer, two ags are used.

Succ: is issued if the requested maneuver was completed successfully.

Not Succ: is issued if the maneuver had to be aborted to avoid some hazardous situation.

3.2 Interaction with Continuous Time Controllers

As discussed in Section 2, the interface has a number of continuous time control laws at its
disposal, which it can invoke to perform the various maneuvers requested by the coordination
layer. From the interface point of view, the details of these control laws are irrelevant; we
only need to consider them from an input-output point of view. These laws use the sensory
information to calculate the engine input over short time intervals. For the SmartPath simu-
lator implementation, this interval is taken as 0.1 seconds, a value dictated by the sampling
frequency of the sensors. At the end of the interval, the continuous time law returns the
control to the interface which checks whether a new reg request has occurred, whether the
current maneuver has completed or not and, if not, whether it is still safe to go ahead with it.
Depending on the outcome of these checks the interface then selects another continuous time
control law and the process is repeated. It should be noted here that the lead control law is
the most natural as it is similar to the control that human drivers carry out most of the time.
It is also more robust, in the sense that it can tolerate larger spacing and velocity errors and
does not depend on communication between vehicles (as the follower law does). Therefore, it
is invoked by the interface as a default, i.e. whenever a maneuver is aborted, in the case of a
communication breakdown, etc.

3.2.1 Initialization

Every time a maneuver is requested by the coordination layer, the interface must make sure
that the appropriate control law is ready to respond before invoking it. For this reason,
the interface should �rst carry out some form of initialization. For the control algorithms
presented in [9], the initialization involves:

� Setting the state of the controller to the right initial condition (for controllers which are
dynamic, such as the lead controller).

� Updating parameter values that might have changed since the controller was last invoked
(e.g., the optimum velocity).

� Calculating the desired trajectories used by the merge, split, decelerate to allow lane
change and move to adjacent lane maneuvers.

8

3.2.2 Safety Checks

Before turning over the control to the continuous time laws, the interface must make sure
that the requested action can be carried out safely. For this reason, it performs certain safety
checks. The checks should be repeated whenever new sensor data comes in. The details of the
safety checks depend on the maneuver in question and the control law implementation. They
are grouped in �ve classes:

� General safety checks that will alert the system if a malfunction occurs (e.g., commu-
nication device failure, engine breakdown or tire burst). Formalizing such safety checks
can be di�cult, as the number of possible malfunctions is large and the way they a�ect
the system is diverse. In [12] and extensive list of malfunctions is presented. A predi-
cate hierarchy is introduced to model the system capability2. The levels of the predicate
hierarchy reect the levels of the control hierarchy and the values of the higher level
predicates depend on those of the lower level ones. System malfunctions cause certain
physical layer predicates to return 0. This may cause some regulation layer predicates to
return zero, which in turn may cause some coordination layer predicates to return zero
and so on. The malfunction safety check at the interface involves checking the predicate
of a control law (such as the merge law) before invoking it. If the predicate returns
zero the control law is incapacitated because of some malfunction and the interface has
to abort the maneuver and select a di�erent law. In [13] an extension of the control
architecture is proposed to guarantee that at least one control law is operational in any
situation.

� Safety checks that deal with the constraints imposed upon the state of the vehicles by
road conditions, engine capabilities and the need for passenger comfort. These factors
impose bounds on the acceleration and the jerk produced by the engine and the brakes;
typically the acceleration has to lie in the range [�5; 3]ms�2 while the jerk in the range
[�5; 5]ms�3, but the bounds may be even tighter in adverse conditions (e.g., rain). As
discussed above, the trajectories designed for the various maneuvers are chosen so that
they lie well within these bounds. However, in certain cases it may be possible for the
actual trajectories to come close to the bounds. For example, the leading platoon in
a merge maneuver may start accelerating half way through the maneuver. This extra
acceleration will be reected on the merging vehicle by the action of the feedback law and,
when added to the acceleration normally required by the merge trajectory, may cause
the state of the trailing vehicle to come dangerously close to the bounds. A safety check
is therefore introduced to abort a maneuver when situations like this are encountered,
so that the trajectory can be redesigned and the maneuver reinitialized. Clearly such a
safety check is only applicable to maneuvers requested by the coordination layer. There
is no way of aborting lead control, for example, even if it causes the states to go close
to the bounds.

� Safety checks involving the detection of new vehicles in the vicinity. If, while a merge or
a split is taking place, a vehicle moves into the lane, between the two vehicles involved
in the maneuver, the maneuver must be aborted and the lead control invoked to bring

2Predicates are functions that return 1 if the system possesses a certain capability and 0 if it does not.

9

the vehicles to a safe position. Similarly, if, while a move to an adjacent lane is taking
place, another vehicle moves into the target position, the move must be aborted. The
presence of these intruding vehicles is detected by comparing the current sensor readings
to the values that are expected from the previous readings. If the di�erence is found
to be too large (more than the length of an average vehicle for example) the check
fails. It should be noted that situations like these are unlikely in a fully automated
highway, provided that the coordination layer is well designed. We introduce these
checks, however, to deal with the cases of semi-automated highways and malfunctions
that may cause unpredictable changes.

� Safety check for the move maneuver. The movemaneuver results in di�erent longitudinal
neighbors (i.e., the front and rear vehicles) after the vehicle changes lane. The safety
checks are designed to ensure collision free operation during the move maneuver and
after its completion. The interface initiates the move maneuver only if a safe inter-
platoon spacing exists on either side of the vehicle's desired position in its target lane.
The execution of the move maneuver takes a �nite amount of time (of the order of 5-10
sec). During this time, the vehicles in the target lane may not be able to maintain the
required spacing due to the tra�c condition downstream. The safety checks make sure
that the gap exists throughout the maneuver. Given the bounds on the capabilities of
the vehicles, we calculate the region of the state space from which the lead controller [9]
can safely take the state of the vehicle to the desired inter-platoon spacing. The move
maneuver is aborted if the state of the vehicle changing lane goes outside the safe region
for the lead controller (with respect to the preceding vehicle in the target lane) or the
state of the trailing vehicle in the target lane goes into the unsafe region of its lead
controller (with respect to the vehicle changing lane). If the move maneuver is aborted,
the vehicle returns to its lane of origin.

� Safety check for the Decel to Change maneuver. This check is carried out only if the
vehicle that is decelerating detects another vehicle ahead of it, in its own lane. In this
case the interface calculates the time that will elapse before the preceding vehicle comes
dangerously close (inside the safety region discussed above), assuming that the velocity
of both vehicles will remain constant. If this time is less than the time required to carry
out the maneuver plus the time required to move from one lane to the next the maneuver
is aborted. In the following section this abort will be referred to as abort safe.

It should be noted that, with the exception of the malfunction check, all safety checks are essen-
tially hybrid, as they involve extracting discrete information (safe vs. unsafe) from continuous
data (like the positions of adjacent vehicles or the acceleration of the vehicle in question).

3.3 Interaction with Physical Layer

The \Physical Layer" represents the vehicle itself. For the AHS scenario considered here, it is
assumed that all vehicles will be equipped with communication devices, sensors (that monitor
the state of the vehicle and its position relative to neighboring vehicles) and actuators (to
apply throttle, steering and brake inputs).

10

The communication capabilities are only used at the coordination layer or higher.
The sensors are assumed to operate perfectly (there is no fault detection in our design so far)
and provide samples of the states at �xed intervals. Finally the engine and brake inputs act
on the third derivative of position (\jerk") [9] and are applied to the engine directly from the
controllers (without the intervention of the interface). The steering input a�ects the second
derivative of the lateral position and orientation of the vehicle [7]. It is also applied directly
to the actuators by the relevant control laws.

For the purpose of simulations, the vehicle dynamics were approximated by a 7th

order continuous time model. Three of the states (position, velocity and acceleration) are
related to the longitudinal dynamics and are a�ected by throttle and brake inputs while the
remaining four (lateral position, lateral velocity, orientation and angular velocity) are related
to the lateral dynamics and are a�ected by the steering input. The equations were integrated
using a 4th order, variable step, Runge-Kutta algorithm. The sampling time for the sensors
is taken to be 0:1 seconds while that of the actuators is 5 milliseconds. A zero order hold is
used to interpolate between actuator samples.

4 Formal Speci�cation & Veri�cation

An interface that meets all the above speci�cations was designed in the form of a number of
interacting �nite state machines (FSM). The advantages of this format are many: it is easy to
translate to code (in C or other programming languages), it is possible to verify automatically
and it provides a direct way of communicating with the coordination layer which is in FSM
form in the current design.

In the subsequent discussion �ve such machines will be presented. INTERFACE
will be the central machine; it will carry out all the tasks speci�ed above. It will cooperate
with FLAG, a machine that keeps track of the ag that will be passed to the coordination
layer, COMMAND, which keeps track of the maneuver requested by the coordination layer,
RES, which keeps track of the reg response communication channel and REQ, which keeps
track of the reg request channel. A sixth machine, COORD will be introduced for the purpose
of automatic veri�cation. Its role is to mimic the operation of the coordination layer, from the
regulation layer point of view. For all these machines we use the following convention: to each
state we associate one or more \outputs". Each time the machine lands in a given state it has
to select one of the outputs associated with that state. The outputs are the only things that
the other machines have access to and they are denoted by lower case letters (whereas the
states are denoted by upper case). The transitions between the states of a machine depend
only on the outputs - either those of the machine itself or those of the other machines. Our
design is deterministic in the sense that a single transition is enabled for every possible set
of outputs. To avoid confusion, the name of the machine is added before the name of the
output when labeling transitions. For example FLAG: Not Succ means that the output of the
machine FLAG is Not Succ. This convention helps keep �gures tractable and simpli�es the
task of coding the machines in the Selection/Resolution format that COSPAN, the veri�cation
language, accepts as input.

11

4.1 Finite State Machine for the Interface

A rough outline of the FSM structure for the interface is given in Figure 4. The two modes
of operation, leader and follower are centered about the two Read Command states. In
these states the interface checks the command bu�er and selects the appropriate maneuver.
Transition from leader mode (Read Command 1) to follower mode (Read Command 2) is
e�ected by a successful merge maneuver. If the maneuver is interrupted (by a new command
or by an abort) the leader mode is reestablished. Transitions in the other direction (from the
follower mode to the leader mode) are e�ected by some form of split maneuver (Split Free
or Split Change). The di�erence here is that even if the maneuver is interrupted half way
through, the leader mode of operation is established. Clearly, the maneuvers that involve
deceleration to allow a lane change and the moving of the vehicle to the adjacent lane do
not a�ect the mode of operation; the vehicle is in leader mode both before and after the
maneuver, whatever the outcome. We now present the detailed structure of the part of the
interface machines used for each maneuver.

Leader: Has the simplest structure (see Figure 5). If no request comes in, the interface resorts
to the default AICC law. Some initialization takes place and then the control inputs to be
applied to the vehicle actuators over the next 0.1 seconds are calculated. Then the interface
checks if a maneuver request came in. If yes, it returns to Read Command 1 to initiate the
requested maneuver. If no, the control input calculation is resumed (without initialization).
reg response is never issued by this part of the protocol.

Follower: The overall structure (Figure 6) is very similar to that of the leader. Again
reg response is never used.3

Merge: The protocol is shown in Figure 7. Whenever the command merge (mrg) is read
from the bu�er the maneuver is initialized and safety checks are carried out. If there is some
problem, the maneuver is aborted and the lead control takes over to bring the vehicle to
safety. If it is safe to proceed, the continuous time merge control law is invoked to calculate
the engine input. After 0.1 seconds, the interface checks for a new reg request . If there is one,
it goes back to read the new command. If not it checks if the maneuver is complete and either
returns to the safety check to continue or goes into follower mode accordingly. A reg response
is issued during the transitions labeled abort and complete. The ag passed is Not Succ and
Succ respectively.

Move: The sequence of events is exactly the same as for the merge maneuver (Figure 8). The
only di�erence is that the maneuver both starts and �nishes in the lead (Read Command 1)
mode.

Split: The protocol used for the Split Free and Split Change maneuvers is shown in Figure 9.
The same sequence of events is used in both cases. The only di�erence is that Split Change
completes when the vehicles have reached twice the distance required by Split Free. This
di�erence is taken care of in the initialization step, where the trajectory that will be tracked

3In a future version, safety checks may be added to the lead and follow parts of the interface. Their role
will be to notify the coordination layer about malfunctions (tire bursts, communication breakdowns, etc.) and
to invoke emergency control laws.

12

is calculated. The sequence of events involved in splitting is very similar to the sequence for
merge, with the obvious di�erence that the vehicle starts in the follower mode and ends up in
the leader mode. A more subtle di�erence is that the ag issued is always Succ. It is assumed
that the coordination layer will not initiate a split unless it is safe to do so. If a hazard emerges
half way through, the maneuver is aborted and lead control is invoked to take the vehicle to
safety. Completion is signaled to the coordination layer, however, as the vehicle is no longer
part of the original platoon.

Decelerate for Lane Change: This is by far the most complicated maneuver. The reason
is mainly that it involves vehicles in two lanes. The event sequence involved is shown in
Figure 10. We will refrain from detailed discussion of the basic steps (initialization etc). There
are two main loops for this maneuver. The top loop (safety check - control calculation - check
for interrupts - done - initialize lead) is very similar to the ones encountered in the previous
maneuvers. It is used during normal deceleration. It can be exited by a new reg request (in the
state check for requests), by an abort (reecting a major safety hazard such as a breakdown)
or by an abort safe. This last option reects the fact that the vehicle preceding the one that
is decelerating can end up in a position that may be dangerous if the maneuver continues. It
leads to the lower loop where the vehicle decelerates to safety under the lead control. This
loop is exited if the safety problem is resolved (in which case the upper loop is reinitiated),
if the vehicle �nds itself in a position where the lane change can be carried out safely (in
which case the maneuver is declared complete) or if the interface decides that it is impossible
to complete the maneuver (in which case an abort is issued). The reg response is set by the
transitions labeled complete and abort . The ag passed is Succ and Not Succ respectively.

4.2 Supporting Finite State Machines

The �nite state machine formalism was also used to implement the remaining parts of the
design: the ag and command bu�ers and the two communication channels. These machines
can be viewed as monitors that observe the transitions of the two major machines (the coor-
dination layer and the interface) and change their own state accordingly.

The ag bu�er is a simple two state machine (Figure 11). It indicates Succ and
Not Succ by being in state S and NS respectively. It transitions to NS whenever a maneuver is
aborted, unless this maneuver is a split. It transitions to S whenever a maneuver is completed,
or if a split is aborted. Clearly the state of this machine is only of importance when a
reg response message \awakens" the coordination layer.

The command bu�er is a �ve state machine (Figure 12). Similarly to the ag bu�er
its state is of importance only when a reg request message is passed to the regulation layer.
Its states reect the maneuver that should be carried out. Its transitions are governed by the
output of the coordination layer.

The reg request machine (Figure 13) has two states: R and NR indicating whether
there is an incoming request or not. The machine transitions from NR to R whenever the
coordination layer output indicates that a new maneuver is needed. It transitions from R
to NR whenever the request is read by the interface and the command starts being serviced
(INTERFACE: read).

Finally the reg response machine (Figure 14) also has two states, R and NR, indi-

13

cating whether the regulation layer has something to tell the coordination layer or not. It
transitions from NR to R whenever there is a need to notify the coordination layer and back
when the coordination layer has taken note of the message (COORD: read).

4.3 Automatic Veri�cation

The design described above was veri�ed automatically using COSPAN [14]. COSPAN is a
veri�cation tool that works by symbolically analyzing a given set of FSM to make sure that
their performance satis�es certain requirements speci�ed by the user. It should be noted that
symbolic testing is di�erent from simulation or execution of the system; it is an automated
mathematical proof that the system ful�lls the requirements.

The machines for the interface, the bu�ers and the communication channels de-
scribed in the previous section were translated to code in the Selection/Resolution (S/R)
FSM model used by COSPAN. An additional state machine that plays the role of the coordi-
nation layer (Figure 15) was used to create the inputs. The transitions that are not uniquely
determined by the current state of the machines (that is the commands of the coordination
layer and the sensor inputs that determine whether a maneuver is complete or has to be
aborted) are \selected" by the veri�cation algorithm to take on all possible values, thus recre-
ating all the runs that the FSM may produce. Monitors were used to test if our design satis�es
the following properties:

1. The interface looks for a new request exactly once in each 0.1 second interval. This is
to make sure that there can be no loop where the regulation layer is stuck to initiating
maneuvers without carrying out any control. The same monitor also makes sure that
regulation layer does not ignore the coordination layer commands.

2. The coordination and regulation layer are in the same mode, that is, follower commands
(e.g., split) are not issued while the vehicle is a leader and vice versa.

3. The ag returned by the interface whenever a split maneuver is requested is always Succ.
This guarantees that the requirement that the split maneuver is never aborted is indeed
satis�ed.

4. The interface carries out exactly one safety check in each 0.1 second interval, except
when the vehicle is a leader or a follower in which case it carries out no safety checks at
all. This guarantees that the latest sensor data is always used for the safety checks.

COSPAN veri�ed that our design indeed performs all the above tasks.

5 Concluding Remarks

The automatic veri�cation described above suggests that the design proposed here will per-
form well under the assumed conditions. As a further test the interface was implemented in
C together with the continuous time control laws described in the references. It was then
introduced in the SmartPath simulation platform [11]. For the purpose of SmartPath, the

14

reg request and reg response interrupts were modeled by software \events" (in the C-Sim pro-
gramming language) and parameters (commands and ags) were passed via global variables.
The complete design is currently being tested in this framework by simulating various sce-
narios that reect actual highway conditions. The results indicate good performance in most
tra�c situations. Moreover, they highlight the problems that may be encountered when deal-
ing with multilayered, hybrid control systems like this. These issues are discussed further
in [15].

It should be noted that the automatic veri�cation described above depends on the
underlying assumption that the coordination layer behaves like the abstraction of Figure 15, at
least as far as the regulation layer is concerned. Therefore, given a design for the coordination
layer, one needs to do some more veri�cation to ensure that, when coupled, the two layers
will perform as required. Alternatively one can try to prove, either by automatic veri�cation
or by theoretical analysis, that the proposed coordination layer design is equivalent to the
abstraction of Figure 15 from the regulation layer point of view. Work in both these directions
is currently underway for the coordination layer design proposed in [5].

The interaction with the continuous time control laws is more challenging. Unlike
the interaction with the coordination layer, which can be easily investigated using standard
FSM tools, the interaction of the interface state machine with the continuous domain is much
more complicated. There are no tools yet to perform automatic veri�cation on hybrid systems
like this. Some tools exist for veri�cation of timed FSM, that is FSM that have \clocks"
associated with each state, based on the work of Alur, Courcoubetis and Dill [16]. However
the dynamics of our system are a lot more complicated than the simple _x = 1 dynamics of
clocks. Therefore attempts to directly use such veri�cation techniques on our system soon run
into trouble. One possible solution to this problem is to construct a conservative abstraction
of our system that falls into the realm of timed automata, that is an abstraction that contains
only \clocks" whose behavior includes all possible behaviors of our system. Then we could
verify our system by verifying the conservative abstraction. Work in this direction is also
underway.

The interface presented here was introduced as a way of coupling discrete event and
continuous time systems. Even though the details are speci�c to the problem at hand we
believe that our work illustrates a more general approach to obtaining such a coupling. It
should be noted however that, despite the fact that the immediate task of achieving commu-
nication between the layers was performed there is still no guarantee that the coupled system
will operate as required under all possible operating environments. Unfortunately there is no
formal theory at the moment to support the analysis of our system. Moreover the automatic
veri�cation techniques also fall short, as described above. We hope that further work on this
problem will provide useful insight for hybrid systems in general and help us induce a formal-
ism capable of dealing with systems like this.

Acknowledgment: The authors would like to thank Farokh Eska�, Bobby Rao, Shankar
Sastry and Pravin Varaiya for helpful discussions providing insight into the problem.

15

References

[1] P. Varaiya, \Smart cars on smart roads: problems of control," IEEE Transactions on
Automatic Control, vol. AC-38, no. 2, pp. 195{207, 1993.

[2] P. Varaiya and S. E. Shladover, \Sketch of an IVHS systems architecture," Tech. Rep.
UCB-ITS-PRR-91-3, Institute of Transportation Studies, University of California, Berke-
ley, 1991.

[3] S. Shladover, C. Desoer, J. Hedrick, M. Tomizuka, J. Walrand, W. Zhang, D. McMahon,
H. Peng, S. Sheikholeslam, and N. McKeown, \Automatic vehicle control developments
in the PATH program," IEEE Transactions on Vehicular Technology, vol. 40, no. 1,
pp. 114{130, 1991.

[4] B. S. Y. Rao and P. Varaiya, \Roadside intelligence for ow control in an IVHS," Trans-
portation Research - C, vol. 2, no. 1, pp. 49{72, 1994.

[5] A. Hsu, F. Eska�, S. Sachs, and P. Varaiya, \Protocol design for an automated highway
system," Discrete Event Dynamic Systems, vol. 2, no. 1, pp. 183{206, 1994.

[6] J. K. Hedrick, D.McMahon, V. Narendran, and D. Swaroop, \Longitudinal vehicle con-
troller design for IVHS system," in American Control Conference, pp. 3107{3112, 1991.

[7] H. Peng and M. Tomizuka, \Vehicle lateral control for highway automation," in American
Control Conference, pp. 788{794, 1990.

[8] S. Sheikholeslam and C. A. Desoer, \Longitudinal control of a platoon of vehicles," in
American Control Conference, pp. 291{297, 1990.

[9] D. N. Godbole and J. Lygeros, \Longitudinal control of the lead car of a platoon," IEEE
Transactions on Vehicular Technology, vol. 43, no. 4, pp. 1125{1135, 1994.

[10] W. Chee and M. Tomizuka, \Lane change maneuver of automobiles for the intelligent
vehicle and highway systems (IVHS)," in American Control Conference, pp. 3586{3587,
1994.

[11] F. Eska�, D. Khorramabadi, and P. Varaiya, \SmartPath: An automated highway system
simulator." PATH Technical Report UCB-ITS-94-4. Institute of Transportation Studies,
University of California, Berkeley, 1994.

[12] J. Lygeros, D. N. Godbole, and M. E. Broucke, \Design of an extended architecture
for degraded modes of operation of AHS." PATH Working Paper, UCB-ITS-PWP-95-3,
Institute of Transportation Studies, University of California, Berkeley, 1995.

[13] J. Lygeros, D. N. Godbole, and M. E. Broucke, \Design of an extended architecture
for degraded modes of operation of IVHS," in American Control Conference, 1995. To
Appear.

[14] Z. Har'El and R. Kurshan, Cospan User's Guide. AT&T Bell Laboratories, 1987.

16

[15] D. N. Godbole, J. Lygeros, and S. Sastry, \Hierarchical hybrid control: An IVHS case
study," in IEEE Control and Decision Conference, pp. 1592{1597, 1994.

[16] R. Alur, C. Courcoubetis, and D. Dill, \Model checking for real-time systems," Logic in
Computer Science, pp. 414{425, 1990.

17

A Figures

REGULATION

LAYER

PHYSICAL
LAYER

RAW SENSOR DATA

LINK LAYER

COORDINATION

 LAYER

MANEUVER REQUEST FLAGS & AGGREGATE
 SENSOR DATA

CONTROL
 INPUT

AGGREGATE TRAFFIC
 FLOW DATA

DESIRED SPEED,
LANE CHANGE
PROPORTIONS,
PLATOON SIZE

(plant)

NETWORK LAYER

HIGHWAY TRAVEL TIMESSUGGESTED ROUTE

Roadside

Vehicle

Figure 1: Hierarchical structure of the control system

18

A

B

A

B

A

B

A

B1B2

A

A

A

dsafe

dsafe

dsafedsafe

Va

Vb

Vb

Vb

Vb

Vb

Vb

Vb

Vb

(a) Change Lane is Requested

(b) First Scenario

(c) Second Scenario

(d) Third Scenario

Figure 2: Three scenarios for changing lane

19

COORDINATION LAYER

COMMAND
 BUFFER

 FLAG
BUFFER

INTERFACE

MERGE SPLIT DECELERATE
TO CHANGE

MOVE FOLLOW LEAD

SENSORS

SELECTION

COMMAND

FLAG

OTHER
VEHICLES

REGULATION LAYER

PHYSICAL LAYER

reg_
request

reg_
response

VEHICLE DYNAMICS

CONTROL INPUT

CONTROL INPUT CALCULATION

Figure 3: Interactions between controller layers

20

LEAD

MOVE

DECEL.
 TO
CHANGE

MERGE

SPLIT

FOLLOW

COMPLETE

NO
COMMAND

NO
COMMAND

READ
COMMAND 1

READ
COMMAND 2

INTERRUPT

INTERRUPT

INTERRUPT

INTERRUPT
 OR
COMPLETE

INTERRUPT
 OR
COMPLETE

INTERRUPT
 OR
COMPLETE

INTERRUPT = ABORT or New Request

Figure 4: Outline of proposed Interface FSM

INITIALIZE
 LEAD

 JERK
CALCULATION

time

REQ: nr
REQ: reg_request

READ
COMMAND 1

init

 CHECK
 FOR
REQUESTS

read

FSM Name: INTERFACE

check

COMMAND: nc
 or
 REQ: nr

Figure 5: Leader actions

21

 JERK
CALCULATION

FSM Name: INTERFACE

COMMAND: nc

read

READ
COMMAND 2

init

INITIALIZE
 FOLLOW

timecheck

 CHECK
 FOR
REQUESTS

REQ: reg_request

REQ: nr

Figure 6: Follower actions

INITIALIZE
 LEAD

SAFETY
CHECKS

 JERK
CALCULATION

DONE?

0.1s
INITIALIZE
 MERGE

REQ: reg_request

COMMAND:
 mrg

READ
COMMAND 1

REQ: nr

check

timeinit

init

COMMAND: nc

read

 CHECK
 FOR
REQUESTS

FSM Name: INTERFACE

abort, o.k.

INTERFACE:
 o.k.

complete,
in_porgress

INTERFACE: in_progress
INTERFACE: abort

READ
COMMAND 2

read

INTERFACE: complete

Figure 7: Merge maneuver protocol

22

INITIALIZE
 LEAD

SAFETY
CHECKS

 JERK
CALCULATION

DONE?

0.1s
INITIALIZE
 MOVE

REQ: reg_request

COMMAND:
 mv

READ
COMMAND 1

REQ: nr

check

timeinit

init

COMMAND: nc

read

 CHECK
 FOR
REQUESTS

FSM Name: INTERFACE

abort, o.k.

INTERFACE:
 o.k.

complete,
in_porgress

INTERFACE: complete

INTERFACE: in_progress
INTERFACE: abort

Figure 8: Move maneuver protocol

SAFETY
CHECKS

INITIALIZE
 LEAD

 JERK
CALCULATION

DONE?

read
read

check

READ
COMMAND 1

READ
COMMAND 2

time

in_progress

complete

 CHECK
 FOR
REQUESTS

REQ: reg_request
REQ: nr COMMAND: sp

init

init

COMMAND: nc

INITIALIZE
 SPLIT

FSM Name: INTERFACE

abort, o.k.

INTERFACE:
 o.k.

INTERFACE: aborts

Figure 9: Split maneuver protocol

23

S
A
F
E
T
Y

C
H
E
C
K
S

I
N
I
T
I
A
L
I
Z
E

L
E
A
D

J
E
R
K

C
A
L
C
U
L
A
T
I
O
N

(
L
E
A
D
)

C
H
E
C
K

D
I
S
T
A
N
C
E

&

V
E
L
O
C
I
T
Y

J
E
R
K

C
A
L
C
U
L
A
T
I
O
N

(
D
E
C
E
L
.
)

D
O
N
E
?

I
N
I
T
I
A
L
I
Z
E

L
E
A
D

I
N
I
T
I
A
L
I
Z
E

L
E
A
D

I
N
I
T
I
A
L
I
Z
E

D
E
C
E
L
.

S
T

IL
L

N
O

T
S

A
F

E
 D

IS
T

.

S
A

F
E

 D
IS

T
.

N
O

T
 S

A
F

E
V

E
LO

C
IT

Y

S
A

F
E

 T
O

M
O

V
E

 O
V

E
R

i
n
i
t

i
n
i
t

i
n
i
t

C
O
M
M
A
N
D
:
c
h

a
b
o
r
t
_
s
a
f
e

t
i
m
e

t
i
m
e

o
.
k
.

c
h
e
c
k

c
h
e
c
k

i
n
_
p
r
o
g
r
e
s
s

i
n
_
p
r
o
g
r
e
s
s

c
o
m
p
l
e
t
e

c
o
m
p
l
e
t
e

a
b
o
r
t

a
b
o
r
t R
E
Q
:
r
e
g
_
r
e
q
u
e
s
t

R
E
Q
:
r
e
g
_
r
e
q
u
e
s
t

C
O
M
M
A
N
D
:

n
c

i
n
i
t

R
E
A
D

C
O
M
M
A
N
D

1

r
e
a
d

C
H
E
C
K

F
O
R

R
E
Q
U
E
S
T
S

C
H
E
C
K

F
O
R

R
E
Q
U
E
S
T
S

F
S

M
 N

am
e:

 IN
T

E
R

F
A

C
E

a
b
o
r
t
_
s
a
f
e

a
b
o
r
t

o
.
k
.

c
o
m
p
l
e
t
e
,

i
n
_
p
r
o
g
r
e
s
s

a
b
o
r
t
,

c
o
m
p
l
e
t
e
,

i
n
_
p
r
o
g
r
e
s
s

Figure 10: Change maneuver protocol

24

S NS

FSM Name: FLAG

INTERFACE: abort

INTERFACE: complete or
 aborts

Succ Not_Succ

Figure 11: Flag Bu�er

MERGE SPLIT

MOVE
DECEL_
TO_
CHANGE

1

1 12

2

2
3

3

3

4

4

4

mrg sp

mvch

 NO
COMMAND

3

2

1

4

0

0

0

0

nc

0. COORD: nc
1. COORD: mrg
2. COORD: ch
3. COORD: mv
4. COORD: sp

FSM Name: COMMAND

Figure 12: Command Bu�er

25

R NR

FSM Name: REQ

INTERFACE: read

nrreg_request

COORD: mrg mv ch sp

Figure 13: reg request Channel

R NR

FSM Name: RES

COORD: read

INTERFACE: complete
 abort or
 aborts

reg_response nr

Figure 14: reg response Channel

26

LEAD

MERGE
READ_
FLAG

READ_
FLAG

READ_
FLAG

READ_
FLAG SPLIT

FOLLOW

MOVE

CHANGE

ch

mv mrg FLAG: Succ

sp

FLAG: abort

FLAG: Succ
 or
 Not_Succ

FLAG: Succ
 or
 Not_Succ

FSM Name: COORD

mv

mrg

ch

read

read

read

read

RES: reg_
 response

RES: reg_
 response

RES: reg_
 response

RES: reg_
 response

FLAG: Succ
 or
 Not_Succ

Figure 15: Coordination Layer Abstraction

27

